If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+17x-160=0
a = 1; b = 17; c = -160;
Δ = b2-4ac
Δ = 172-4·1·(-160)
Δ = 929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{929}}{2*1}=\frac{-17-\sqrt{929}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{929}}{2*1}=\frac{-17+\sqrt{929}}{2} $
| 5/4z=2/9 | | 3.6x-6=3.3x | | 3x2-6x-5=0 | | 3(r+9)=63 | | n/25=15 | | X=(x+42)2 | | 1.29x+0.79x=11 | | 4.8/m=6.4 | | X^2+1/5x=0 | | (16x-9)+(16x+9)=26 | | Ax300=1800 | | 6(x+4)=4x+6 | | (4x-3)^2+(4x-3)^2=26 | | x(x+15)-5=x(x+5) | | W+1=d | | 4(4n+4)=4(n+10) | | 4w=-26=82 | | 14a-43=49+57a | | 3(y-4)=-3y+12 | | 9e+4=−5e+14+13e9e+4=−5e+14+13e | | 3x−9=7+2x+x | | -9w-45=3(w+1) | | x/2=25/7 | | (4x+10)=(2x-4)=180 | | 3(y+5)=5y+27 | | -35-7x=-7(x=5) | | $x^2-7x=98$. | | 3u+5(u-8)=24 | | 0.25(4x-8)+4=0.5x+6 | | —4/9f=-3 | | 2(y+2)+4y=-14 | | 3.3-0.3y+0.3y=3.3 |